一、儲(chǔ)能系統(tǒng)分類
按電氣結(jié)構(gòu)劃分,大型儲(chǔ)能系統(tǒng)可以劃分為:
(1)集中式:低壓大功率升壓式集中并網(wǎng)儲(chǔ)能系統(tǒng),電池多簇并聯(lián)后與PCS相連,PCS追求大功率、高效率,目前在推廣1500V的方案。
(2)分布式:低壓小功率分布式升壓并網(wǎng)儲(chǔ)能系統(tǒng),每一簇電池都與一個(gè)PCS單元連接,PCS采用小功率、分布式布置。
(3)智能組串式:基于分布式儲(chǔ)能系統(tǒng)架構(gòu),采用電池模組級(jí)能量?jī)?yōu)化、電池單簇能量控制、數(shù)字智能化管理、全模塊化設(shè)計(jì)等創(chuàng)新技術(shù),實(shí)現(xiàn)儲(chǔ)能系統(tǒng)更高效應(yīng)用。
(4)高壓級(jí)聯(lián)式大功率儲(chǔ)能系統(tǒng):電池單簇逆變,不經(jīng)變壓器,直接接入6/10/35kv以上電壓等級(jí)電網(wǎng)。單臺(tái)容量可達(dá)到5MW/10MWh。
(5)集散式:直流側(cè)多分支并聯(lián),在電池簇出口增加DC/DC變換器將電池簇進(jìn)行隔離,DC/DC變換器匯集后接入集中式PCS直流側(cè)。
二、儲(chǔ)能技術(shù)路線迭代圍繞安全、成本和效率
安全、成本和效率是儲(chǔ)能發(fā)展需要重點(diǎn)解決的關(guān)鍵問題,儲(chǔ)能技術(shù)的迭代核心也是要提高安全、降低成本、提高效率。
(1)安全性
儲(chǔ)能電站的安全性是產(chǎn)業(yè)最關(guān)注的問題。電化學(xué)儲(chǔ)能電站可能存在的安全隱患包括電氣引發(fā)的火災(zāi)、電池引發(fā)的火災(zāi)、氫氣遇火發(fā)生爆炸、系統(tǒng)異常等。追溯儲(chǔ)能電站的安全問題產(chǎn)生的原因,通常可以歸咎于電池的熱失控,導(dǎo)致熱失控的誘因包括機(jī)械濫用、電濫用、熱濫用。為避免發(fā)生安全問題,需要嚴(yán)格監(jiān)控電池狀態(tài),避免熱失控誘因的產(chǎn)生。
(2)高效率
電芯的一致性是影響系統(tǒng)效率的關(guān)鍵因素。電芯的一致性取決于電芯的質(zhì)量及儲(chǔ)能技術(shù)方案、電芯的工作環(huán)境。隨著電芯循環(huán)次數(shù)增加,電芯的差異逐步體現(xiàn),疊加運(yùn)行過程中實(shí)際工作環(huán)境的差異,將導(dǎo)致多個(gè)電芯之間的差異加劇,一致性問題突出,對(duì)BMS管理造成挑戰(zhàn),甚至面臨安全風(fēng)險(xiǎn)。在儲(chǔ)能電站設(shè)計(jì)和運(yùn)行方案中,應(yīng)當(dāng)盡量提高電池的一致性以提高系統(tǒng)效率。
(3)低成本
儲(chǔ)能系統(tǒng)的成本與初始投資和循環(huán)壽命有關(guān)。電池材料的老化衰退、充放電制度、電池運(yùn)行溫度、單體的一致性都會(huì)影響電池的循環(huán)壽命。當(dāng)集裝箱內(nèi)電池溫差大于10度,會(huì)導(dǎo)致電池壽命縮短15%以上。模組間溫升差異也會(huì)導(dǎo)致整體系統(tǒng)壽命縮短。儲(chǔ)能系統(tǒng)應(yīng)當(dāng)通過優(yōu)化充放電方式、降低系統(tǒng)間溫差、提高電池一致性來提升系統(tǒng)循環(huán)壽命。
三、儲(chǔ)能集成技術(shù)路線:拓?fù)浞桨钢饾u迭代
(1)集中式方案:1500V取代1000V成為趨勢(shì)
隨著集中式風(fēng)光電站和儲(chǔ)能向更大容量發(fā)展,直流高壓成為降本增效的主要技術(shù)方案,直流側(cè)電壓提升到1500V的儲(chǔ)能系統(tǒng)逐漸成為趨勢(shì)。相比于傳統(tǒng)1000V系統(tǒng),1500V系統(tǒng)將線纜、BMS硬件模塊、PCS等部件的耐壓從不超過1000V提高到不超過1500V。儲(chǔ)能系統(tǒng)1500V技術(shù)方案來源于光伏系統(tǒng),根據(jù)CPIA統(tǒng)計(jì),2021年國(guó)內(nèi)光伏系統(tǒng)中直流電壓等級(jí)為1500V的市場(chǎng)占比約49.4%,預(yù)期未來會(huì)逐步提高至近80%。1500V的儲(chǔ)能系統(tǒng)將有利于提高與光伏系統(tǒng)的適配度。
1500V儲(chǔ)能系統(tǒng)方案對(duì)比1000V方案在性能方面亦有提升。以陽(yáng)光電源的方案為例,與1000V系統(tǒng)相比,電池系統(tǒng)能量密度與功率密度均提升了35%以上,相同容量電站,設(shè)備更少,電池系統(tǒng)、PCS、BMS及線纜等設(shè)備成本大幅降低,基建和土地投資成本也同步減少。據(jù)測(cè)算,相較傳統(tǒng)方案,1500V儲(chǔ)能系統(tǒng)僅初始投資成本就降低了10%以上。但同時(shí),1500V儲(chǔ)能系統(tǒng)電壓升高后電池串聯(lián)數(shù)量增加,其一致性控制難度增大,直流拉弧風(fēng)險(xiǎn)預(yù)防保護(hù)以及電氣絕緣設(shè)計(jì)等要求也更高。
(2)分布式方案:效率高,方案成熟
分布式方案又稱作交流側(cè)多分支并聯(lián)。與集中式技術(shù)方案對(duì)比,分布式方案將電池簇的直流側(cè)并聯(lián)通過分布式組串逆變器變換為交流側(cè)并聯(lián),避免了直流側(cè)并聯(lián)產(chǎn)生并聯(lián)環(huán)流、容量損失、直流拉弧風(fēng)險(xiǎn),提升運(yùn)營(yíng)安全。同時(shí)控制精度從多個(gè)電池簇變?yōu)閱蝹(gè)電池簇,控制效率更高。
山東華能黃臺(tái)儲(chǔ)能電站是全球首座百兆瓦級(jí)分散控制的儲(chǔ)能電站。黃臺(tái)儲(chǔ)能電站使用寧德時(shí)代的電池+上能電氣的PCS系統(tǒng)。根據(jù)測(cè)算,儲(chǔ)能電站投運(yùn)后,整站電池容量使用率可達(dá)92%左右,高于目前業(yè)內(nèi)平均水平7個(gè)百分點(diǎn)。此外,通過電池簇的分散控制,可實(shí)現(xiàn)電池荷電狀態(tài)(SOC)的自動(dòng)校準(zhǔn),顯著降低運(yùn)維工作量。并網(wǎng)測(cè)試效率最高達(dá)87.8%。從目前的項(xiàng)目報(bào)價(jià)來看,分散式系統(tǒng)并沒有比集中式系統(tǒng)成本更高。
(3)智能組串式方案:一包一優(yōu)化、一簇一管理
華為提出的智能組串式方案,針對(duì)集中式方案中三個(gè)主要問題進(jìn)行解決:(1)容量衰減。傳統(tǒng)方案中,電池使用具有明顯的“短板效應(yīng)”,電池模塊之間并聯(lián),充電時(shí)一個(gè)電池單體充滿,充電停止,放電時(shí)一個(gè)電池單體放空,放電停止,系統(tǒng)的整體壽命取決于壽命最短的電池。(2)一致性。在儲(chǔ)能系統(tǒng)的運(yùn)行應(yīng)用中,由于具體環(huán)境不同,電池一致性存在偏差,導(dǎo)致系統(tǒng)容量的指數(shù)級(jí)衰減。(3)容量失配。電池并聯(lián)容易造成容量失配,電池的實(shí)際使用容量遠(yuǎn)低于標(biāo)準(zhǔn)容量。
智能組串式解決方案通過組串化、智能化、模塊化的設(shè)計(jì),解決集中式方案的上述三個(gè)問題:(1)組串化。采用能量?jī)?yōu)化器實(shí)現(xiàn)電池模組級(jí)管理,采用電池簇控制器實(shí)現(xiàn)簇間均衡,分布式空調(diào)減少簇間溫差。(2)智能化。將AI、云BMS等先進(jìn)ICT技術(shù),應(yīng)用到內(nèi)短路檢測(cè)場(chǎng)景中,應(yīng)用AI進(jìn)行電池狀態(tài)預(yù)測(cè),采用多模型聯(lián)動(dòng)智能溫控策略保證充放電狀態(tài)最優(yōu)。(3)模塊化。電池系統(tǒng)模塊化設(shè)計(jì),可單獨(dú)切離故障模組,不影響簇內(nèi)其它模組正常工作。將PCS模塊化設(shè)計(jì),單臺(tái)PCS故障時(shí),其它PCS可繼續(xù)工作,多臺(tái)PCS故障時(shí),系統(tǒng)仍可保持運(yùn)行。
(4)高壓級(jí)聯(lián)方案:無并聯(lián)結(jié)構(gòu)的高效方案
高壓級(jí)聯(lián)的儲(chǔ)能方案通過電力電子設(shè)計(jì),實(shí)現(xiàn)無需經(jīng)過變壓器即可達(dá)到6-35kv并網(wǎng)電壓。以新風(fēng)光35kv解決方案為例,單臺(tái)儲(chǔ)能系統(tǒng)為12.5MW/25MWh系統(tǒng),系統(tǒng)電氣結(jié)構(gòu)與高壓SVG類似,由A、B、C三相組成。每相包含42個(gè)H橋功率單元配套42個(gè)電池簇。三相總共126個(gè)H橋功率單元共126簇電池簇,共存儲(chǔ)25.288MWh電量。每簇電池包含224個(gè)電芯串聯(lián)而成。
高壓級(jí)聯(lián)方案的優(yōu)勢(shì)體現(xiàn)在:(1)安全性。系統(tǒng)中無電芯并聯(lián),部分電池?fù)p壞,更換范圍窄,影響范圍小,維護(hù)成本低。(2)一致性。電池組之間不直接連接,而是經(jīng)過AC/DC后連接,因此所有電池組之間可以通過AC/DC進(jìn)行SOC均衡控制。電池組內(nèi)部只是單個(gè)電池簇,不存在電池簇并聯(lián)現(xiàn)象,不會(huì)出現(xiàn)均流問題。電池簇內(nèi)部通過BMS實(shí)現(xiàn)電芯之間的均衡控制。因此,該方案可以最大程度利用電芯容量,在交流側(cè)同等并網(wǎng)電量情況下,可以安裝較少的電芯,降低初始投資。(3)高效率。由于系統(tǒng)無電芯/電池簇并聯(lián)運(yùn)行,不存在短板效應(yīng),系統(tǒng)壽命約等同于單電芯壽命,能最大限度提升儲(chǔ)能裝置的運(yùn)行經(jīng)濟(jì)性。系統(tǒng)無需升壓變壓器,現(xiàn)場(chǎng)實(shí)際系統(tǒng)循環(huán)效率達(dá)到90%。
(5)集散式方案:直流隔離+集中逆變
集散式方案又稱作直流側(cè)多分支并聯(lián),在傳統(tǒng)集中式方案的基礎(chǔ)上,在電池簇出口增加DC/DC變換器將電池簇進(jìn)行隔離,DC/DC變換器匯集后接入集中式PCS直流側(cè),2~4臺(tái)PCS并聯(lián)接入一臺(tái)就地變壓器,經(jīng)變壓器升壓后并網(wǎng)。系統(tǒng)中通過增加DC/DC直流隔離,避免直流并聯(lián)產(chǎn)生的直流拉弧、環(huán)流、容量損失,大大提高了系統(tǒng)的安全性,從而提升系統(tǒng)效率。但由于系統(tǒng)需要經(jīng)過兩級(jí)逆變,對(duì)系統(tǒng)效率有反向影響。