在機械類產品中,很多重要零部件如軸承、齒輪、曲軸、凸輪軸、活塞銷和萬向節等,在熱處理之后均需經過磨削加工。相比之下,磨削時單位切削面積上的功率消耗遠遠超過其它加工方法,所轉化熱量的大部分會進入工件表面,因此容易引起加工面金相組織的變化。在工藝參數、冷卻方法和磨料狀態選擇不當的情況下,工件在磨削過程中極易出現相當深的金相組織變化層(即回火層),并伴隨出現很大的表面殘余應力,甚至導致出現裂紋,這就是所謂的磨削燒傷問題。
零部件的表面層燒傷將使產品性能和壽命大幅度地下降,甚至根本不能使用,造成嚴重的質量問題。為此,生產企業一方面通過執行正確、科學的工藝規范,減輕和避免出現磨削燒傷現象;另一方面,加強對零部件的檢驗,及時發現不合格工件,并判斷正在進行的磨削工藝狀況。
但長期以來,對工件表面磨削燒傷的檢驗,除了最簡單的目測法外,就是采用已延續多年的傳統方法――酸洗法,即在被檢零部件表面涂上酸液或將其浸入盛有按規定配制的酸液槽中。之后(或在把工件取出后),根據表面呈現的不同顏色,對磨削燒傷的程度作出相應的判斷。一般地說,若色澤沒有變化,就表明情況正常;而當顏色變成灰色,則說明已有燒傷情況存在,隨著色澤變得越來越深,表示工件表面因溫度更高,引起的磨削燒傷更為嚴重。
傳統檢查方法雖然簡單易行,但有著很大的局限性,主要是工件表面經酸液浸蝕,即使為無問題的零部件,也不能再予以使用。傳統方法執行的實際上是一種破壞性檢查。
從以上描述可知,酸洗法本質上屬于定性檢查,難以對磨損燒傷程度做出定量的說明。
鑒于上面兩點,采取傳統方法時,只能采用抽檢的方式,且樣本很小,欲對所執行的工藝過程作出較確切的評價并予以改進是很困難的。
理論表明,酸洗法檢驗只能反映因金相組織結構變化引起的硬度下降這種情況,對于工件表面存在的殘余應力則無法反映,放在全面揭示磨削燒傷的程度上顯得不足。
另一方面,由于使用了酸液,企業增加了消除環境污染的負擔;傳統檢查方法的規范化可靠性水平較低,更難以制定可操作性強的評定標準。