1 引言
近年來,隨著通訊技術.網絡技術和半導體技術的飛速發展,智能儀器儀表系統的設計步入了嶄新的時代。其中,實現Intenet接入是當前智能儀器儀表系統發展的熱點領域和重要方向。
ISP(In System Programmability)在系統可編程技術對于實現智能儀器儀表系統基于TCP/IP協議的Internet接入具有重要的意義。所謂“在系統可編程”是指對器件、電路甚至整個系統進行現場升級和功能重構的能力。這種重構可以在實驗開發過程中,制造過程中甚至是在交付用戶使用之后在現場或通過Internet進行。
利用ISP技術,能夠使得儀器儀表的硬件系統不再是純粹的固定結構,而是具備某些軟件特性的靈活結構,甚至可以在運行狀態下根據需要重新配置功能。由于模擬集成芯片制造工藝的復雜性,當前ISP技術主要應用在數字系統設計中,如美國Xilinx公司的FPGA/CPLD等均支持ISP技術。1999年末,美國Lattice公司率先在制造工藝上取得突破,推出了ispPAC(In System Pro.grammable Analog ICs),將ISP技術引入到了模擬系統中,給智能儀器儀表系統的沒計帶來了革命性的變化。
結合ISP技術通過Internet將智能儀器儀表系統接入Internet,就可以方便地實現對儀器儀表的遠程監視、控制、維護、升級和工業自動化。
2 儀器儀表系統基于ISP技術的設計思想
通過充分利用當前最先進的ISP技術,我們所設計的智能儀器儀表系統不僅要具備系統級現場可編程的能力,而且能夠通過Intemet實現基于TCP/IP協議的系統功能遠程動態重構、現場升級和通訊互訪。
一般來說,智能儀器儀表系統大都可劃分為3個模塊:CPU、模擬系統和數字邏輯系統等。這里,我們結合。Analog Device公司最新推出的具有模擬功能的ADuC2812 MCU,Philips率先在業界推出的支持Internet接入的16位MCU,Lattice公司最新推出的ispPAC和Xilinx公司的FPGA/CPLD來具體討論實現ISP和Internet接入的智能儀器儀表系統的設計。
3儀器儀表系統的CPU與ISP技術
CPU是智能儀器儀表系統的靈魂。智能儀器儀表系統的整體性能很大程度上取決于CPU的先進性和靈活性。
隨著半導體技術的發展,陸續出現了不少增強型的CPU。由于CPU的ISP技術對于實現系統網絡化和遠程監控具有決定性的意義,同時由于8位MCU在當前智能儀器儀表系統中應用的廣泛性,我們主要結合支持ISP技術的AnalogDevice公司的8位Mcu(ADuC812)來討論ISP技術的應用。
3.1 ADuC812的結構和性能
Analog Device公司的ADuC812由與8051兼容的內核、存儲器.片內外圍設備、電源單元和模擬單元等部分構成。與805l兼容的內核額定上作頻率為12MHz(最大16MHz),3個16位定時器/計數器,功能包括看門狗定時器WDT、電源監視器PSM以及高速ADC。至RAM捕獲DMA控制器。片內有8K字的閃速/電擦除程序存儲器,640字的閃速/電擦除數據存儲器和256字節片內數據RAM.支持16M字節外部數據尋址空間和64K字節外部程序尋址空間,為多處理器接口和I/O擴展提供了32條可編程的I/O總線,端口3有高電流驅動能力,同時具有標準的UART串行端口和可配置的12C或SPI接口。
模擬單元包括8通道、高速(200KSPS)自校準12位ADC、片內40PPM/℃的電壓基準、兩個12位電壓輸出DAC和片內溫度傳感器等。可靈活地構建功能強人的12位數據采集系統。
MCU內核和模擬轉換器二者均有正常、空閑和掉電工作模式,提供了適合于低功耗應用的靈活的電源管理方案。
3.2 ADuC812的ISP在系統編程
ADuC812通過標準UART串行接口實現程序代碼的下載(在系統編程),用戶在ADuC812串行下載模式下可以將程序代碼通過Pc機的串口下載到芯片程序存儲器中。
在ADuC812之后,AnalogDevice公司又推出了支持ISP技術的16位和24位精度的模擬McuADuC816及ADuC824等系列產品。
4 模擬系統的設計與lSP技術
在Lattlce公司1999年末率先推出高性能的系統可編程模擬電路ispPAC之前,模擬系統的設計往往需要用大量標準分離器件來搭建。ispPAC的出現,使得高集成度的精確模擬設計現在能夠通過一小塊單片ispPA芯片來實現,從根本上簡化和加速了模擬電路的設計、集成和配置,避免了采用傳統的ASIC芯片時的成本高、設計周期長的缺點,給傳統的模擬系統開發帶來了革命性的變化,其性能類似于數字系統中的FPGA。
目前ispPAC系列產品包括ispPAC10、ispPAC20和ispPAC80等3種。
下面結合ispPAC來討論ISP技術在模擬系統設計中的應用。
<