開關電源電磁干擾抑制的目的是使產品在一定的電磁環境下受到電磁干擾時,無性能的下降或故障,能工作正常,同時對電磁環境不構成污染。
一、開關電源電磁干擾的產生機理
開關電源產生的干擾,按噪聲干擾源種類來分,可分為尖峰干擾和諧波干擾兩種。若按耦合通路來分,可分為傳導干擾和輻射干擾兩種。現在按噪聲干擾源來分別說明;
1、二極管的反向恢復時間引起的干擾
高頻整流回路中的整流二極管正向導通時有較大的正向電流流過,在其受反偏電壓而轉向截止時,由于pn結中有較多的載流子積累,因而在載流子消失之前的一段時間里,電流會反向流動,致使載流子消失的反向恢復電流急劇減少而發生很大的電流變化(di/dt)。
2開關管工作時產生的諧波干擾
功率開關管在導通時流過較大的脈沖電流。例如正激型,推挽型和橋式變換器的輸入電流波形在阻性負載時近似為矩形波,其中含有豐富的高次諧波分量。當采用零電流、零電壓開關時,這種諧波干擾將會很小。另外,功率開關管在截止期間,高頻變壓器繞組漏感引起的電流突變,也會產生尖峰干擾。
3交流輸入回路產生的干擾
無工頻變壓器的開關電源輸入端整流管在反向恢復期間會引起高頻衰減振蕩產生干擾。
開關電源產生的尖峰干擾和諧波干擾能量,通過開關電源的輸入輸出線傳播出去而形成的干擾稱之為傳導干擾;而諧波和寄生振蕩的能量,通過輸入輸出線傳播時,都會在空間產生電場和磁場。這種通過電磁輻射產生的干擾稱為輻射干擾。
4、其他原因
元器件的寄生參數,開關電源的原理圖設計不夠完美,印刷線路板(pcb)走線通常采用手工布置,具有很大的隨意性,pcb的近場干擾大,并且印刷板上器件的安裝、放置,以及方位的不合理都會造成emi干擾。
二、電磁干擾的相關理論
1、開關電源的主要電磁干擾源
開關電源中的電磁干擾源主要有開關器件、二極管和非線性無源元件。在開關電源中,印制板布線不當也是引起電磁干擾的一個主要因數。
1.1開關電路產生的電磁干擾
對開關電源來說,開關電路產生的電磁干擾是其主要干擾源之一。開關電路是開關電源的核心,主要由開關管和高額變壓器組成。他產生的dv/dt具有較大的脈沖,頻帶較寬且諧波豐富。這種脈沖干擾產生的主要原因是:
(1)開關管負載為高頻變壓器初級線圈,是感性負載。在開關導通瞬間,初級線圈產生很大的涌流,并在初級線圈的兩端出現較高的浪涌尖峰電壓.在開關管斷開瞬間,由于初級線圈的漏磁通,致使一部分能量沒有從一次線圈傳輸到二次線圈,儲藏在電感中的這部分能量將和集電極電路中的電容、電阻形成帶有尖峰的衰減振蕩,疊加在關斷電壓上,形成關斷尖峰電壓。
這種電源電壓中斷會產生與初級線圈接通時一樣的磁化沖擊電流瞬變,這個噪聲會傳導到輸入輸出端,形成傳導干擾,重者有可能擊穿開關管。
(2)脈沖變壓器初級線圈,開關管和濾波電容構成的高頻開關電流環路可能產生較大的空間輻射,形成輻射干擾,如果電容濾波容量不足或高頻特性不好,電容上的高頻阻抗會使高頻電流以差模方式傳導到交流電源中形成傳導干擾。
[$page] 1.1.2二極管整流電路產生的電磁干擾
主電路中整流二極管產生的反向恢復電流的1di/dt1遠比續流二極管恢復電流Idi/dtl小得多。作為電磁干擾源來研究,整流二極管反向恢復電流形成的干擾強度大,頻帶寬。整流二極管產生的電壓跳變遠小于電源中的功率開關管導通和關斷時產生的電壓跳變。因此,不計整流二極管產生的Idv/dtI和Idi/dtl的影響,而把整流電路當成電磁干擾耦合通道的一部分來研究也是可以的。
2、開關電源電磁干擾的耦合通道
開關電源通過耦合通道對自身產生干擾。通常多采用差模和共模干擾加以分析。
“共模干擾”是指干擾大小和方向一致,其存在于電源任何一相對大地,或中線對大地間。共模干擾也稱縱模干擾、不對稱干擾或接地干擾。是載流體與大地之間的干擾。
“差模干擾”是指干擾大小相等,方向相反,其存在于電源相線與中線之間。差模干擾也稱常模干擾、橫模干擾或對稱干擾。·這是載流體之間的干擾。
共模干擾說明了干擾是由輻射或串擾耦合到電路中的